

Attention Customers:

Shimadzu Industrial Systems Co., Ltd

Request for Safety Inspections for Products (Industrial Furnaces) in Extended Use

Thank you for choosing Shimadzu products.

Shimadzu industrial furnaces are used by many of our customers for many years. Some malfunctions have been noted to date however in instruments used for an extended period, and so we would like to provide information on such cases and on related inspections.

If you find it difficult to implement the recommended inspections by yourself, we can provide such services on request, so by all means contact us for details. Thank you for your cooperation in ensuring the continued safe use of our products.

1. Malfunctions

1.1 Malfunctions of the oil diffusion pump

In instruments that use an oil diffusion pump, problems have occurred following oil replacement for the oil diffusion pump. After oil replacement, if the pump is heated with residual air remaining instead of establishing a vacuum within the pump, intense ignition within the pump has occurred, causing soot to spew from the furnace doors.

Causes of this phenomenon may include the following.

- (1) The rubber vacuum hose connecting the oil diffusion pump and the auxiliary pump deteriorates and collapses, so a vacuum cannot be established normally.
- (2) A decrease in the performance of the auxiliary pump
- (3) External leakage of the valves in the piping
- (4) Contamination of the oil in the oil diffusion pump used (when the oil is topped up rather than replaced)

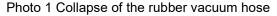


Figure 1 Overview Schematic

1.2 Malfunctions in instruments using hydrogen gas

Loud noise has been heard during the degreasing heating process at atmospheric pressure using hydrogen gas, and during the process of replacement with nitrogen within the furnace after degreasing. When the instrument was checked, it was determined that the carbon parts within the furnace had been damaged. In the instrument, hydrogen is burnt in the instrument discharge unit. It is thought that extinguishing this flame leads air to become mixed in, possibly igniting internally, or that the hydrogen replacement time is possibly insufficient. With these instruments, specifying the exact situation is difficult due to malfunctions of the meters that measure and record the combustion temperature, so it has not been possible to clearly specify the cause.

Causes of this phenomenon may include the following.

- (1) It could not be ensured that the value of the replacement flowrate (L/min) × replacement time (h) is at least 3.3 times the furnace capacity.
- (2) The fire detection temperature sensor malfunctions, and fires cannot be detected.
- (3) There are leaks in the piping, and so air (O2) unexpectedly flows into the interior of the furnace.
- (4) There are leaks in the piping, and the confirmation time setting for the automatic leak check function is insufficient, so leaks in the piping system cannot be detected.

Photo 2 Damage inside the furnace

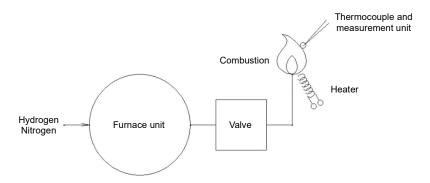


Figure 2 Overview Schematic

1.3 Malfunction of the heater system breaker

Ignition of the breaker in the power panel has occurred. Damage has been severe, and it has not been possible to specify the exact cause. However, the surfaces of the adjacent terminals are unusually oxidized, and they have been operating for an extended period (approximately 30 years), so it is likely that surface oxidation of the contacts has progressed, and contact resistance has increased, potentially leading to heat generation and ignition.

In general, the causes of breaker fires can include the following.

- (1) Loosening of the contact terminal connections leads to heat generation.
- (2) Surface oxidation of the contacts progresses, and the contact resistance increases, generating heat.
- (3) The insulation resistance decreases, causing electrical shorts and grounding.
- (4) The ambient room temperature is high, and the temperature in the panel rises, accelerating the progression of the above-mentioned factors.

2. Request for Inspection of Instruments

Kindly inspect the following items, including inspections related to the cases outlined above, to prevent a decrease in safety due to age-related deterioration. In the event that you have difficulty with such inspections, contact Shimadzu to receive an estimate for inspections and replacement procedures.

Applicable System	Presumed Risk	Inspection Items	Checl
Instruments	Damage and explosion	Visually check the rubber vacuum hose.	
Using Oil	of the oil diffusion pump	Check the individual capacity of the auxiliary	
Diffusion	or are on amadion pamp	pump (latter stage pump).	
Pumps		Checks the oil contamination in the diffusion	
		pump and the replacement frequency.	
		Check the disconnection of the oil diffusion	
		pump heater and check that there is no loss	
		due to heater deformation.	
		Visually check if water is flowing into the oil	
		diffusion pump.	
		Check that external leakage has not occurred.	
Instruments	Explosions if there is any	Check that the element heater in the hydrogen	
Using	oxygen at high	combustion unit is not disconnected.	
Hydrogen Gas	temperatures inside the	Check that the temperature of the	
	furnace	thermocouple in the hydrogen combustion unit	
		is normal.	
		Check that there is no problem with the	
		pressure sensor indicator.	
		Check that the value for the replacement	
		flowrate (L/Min) x replacement time (h) is set to	
		at least 3.3 times the furnace capacity.	
		Check for degradation and appropriate tensile	
		loading of the rotary pump belt.	
		Check that leaks in the exhaust piping have	
		not occurred.	
		Check that the leak check time setting is not	
		too short. (The time configured at the time of	
		shipment is noted in the instruction manual.)	
Pressurized	Open the furnace doors	Check that the clutch ring lock mechanism is	
Furnaces	when pressurized	operating normally.	
	Open the furnace unit	Check that the lock mechanism for the furnace	
	leak valve when	unit leak valve is operating normally.	
	pressurized	μ	
	Gas is spewing from the	Check that there is no rise in the pressure of	
	trap safety valve	the trap when the furnace interior is	
	because of an internal	pressurized.	
	leak in the degreasing	pressurized.	
Furnosas!#	piping valves	Chook the incide of the sylvania	
Furnaces with	Flames appear when	Check the inside of the exhaust gas	
Exhaust Gas	wax or oil build up	combustion instrument. Check that there is no	
Combustion	internally	oil buildup or wax adhesion.	
Instruments at			
a Stage after			
RP			
Overall	Ignition due to static	Check that the exhaust duct is grounded using	
System	electricity at the exhaust	metal piping.	
	duct provided by the		
	customer at the pump		
	outlet		
	Electric shocks from	Visually check that there is no deterioration of	
	water leaks	the instrument or cooling water hose.	
		Visually check that the surfaces of the	
	Heat generation and		
	ignition due to surface	electrical system terminals are not oxidized,	
	oxidation or loose	and that the connections are not loose.	
	connections of the		
	electrical system	1	

terminals		
The ambient room	Check that the ambient temperature in the	
temperature is high, and	room is not too high, and that the temperature	
the temperature in the	inside the panel is rising abnormally.	
panel rises		
The insulation resistance	Check the insulation resistance of the power	
has decreased, leading	system.	
to heat generation and		
ignition from an electrical		
leak		
Is the cooling water	Check that the cooling water flowrate sensor is	
flowing?	normal, by stopping the water to check	
	whether the alarm is issued.	
Overturning of the	Visually check that the anchor bolts are	
instrument due to an	fastened.	
earthquake		
The recorder is	Check whether the recorder is recording data	
malfunctioning, and signs	normally.	
of problems with the		
safety of the instrument		
cannot be confirmed		

Note: In addition, to ensure a long and safe instrument operating life, check the safety manual (Ensuring Safe Usage) posted on the website.